MSNの"RankNet"(ランクネット)

MSNが明らかにしたランキング技術"RankNet" "Neural Network Technology"に関連する特許について


公開日時:2005年06月23日 09:45

MSN Search's WebLogにて記述が少し変更され、MSN Searchに関連する技術として"RankNet"(ランクネット)があることが明示されました。RankNetについてはChris Burges氏の論文"Learning to Rank using Gradient Descent"に記載がありましたが、RankNetに関連するMicrosoftの特許が2つありました。

1つは"System and method for identifying content and managing information corresponding to objects in a signal"。もう1つが"Method for scanning, analyzing and handling various kinds of digital information content"。

An "interactive signal analyzer" provides a framework for sampling one or more signals, such as, for example, one or more channels across the entire FM radio spectrum in one or more geographic regions, to identify objects of interest within the signal content and associate attributes with that content. The interactive signal analyzer uses a signal fingerprint extraction algorithm, i.e., a "fingerprint engine," for deriving traces from segments of one or more signals. These traces are referred to as "fingerprints" since they are used to uniquely identify the signal segments from which they are derived. These fingerprints are then used for comparison to a database of fingerprints of known objects of interest. Information describing the identified content and associated object attributes is then provided in an interactive user database for viewing and interacting with information resulting from the comparison of the fingerprints to the database. [Herley, Cormac; (Bellevue, WA) ; Burges, Chris; (Bellevue, WA) ; Renshaw, Erin; (Kirkland, WA), Abstract, "System and method for identifying content and managing information corresponding to objects in a signal"]
Computer-implemented methods are described for, first, characterizing a specific category of information content--pornography, for example--and then accurately identifying instances of that category of content within a real-time media stream, such as a web page, e-mail or other digital dataset. This content-recognition technology enables a new class of highly scalable applications to manage such content, including filtering, classifying, prioritizing, tracking, etc. An illustrative application of the invention is a software product for use in conjunction with web-browser client software for screening access to web pages that contain pornography or other potentially harmful or offensive content. A target attribute set of regular expression, such as natural language words and/or phrases, is formed by statistical analysis of a number of samples of datasets characterized as "containing," and another set of samples characterized as "not containing," the selected category of information content. This list of expressions is refined by applying correlation analysis to the samples or "training data." Neural-network feed-forward techniques are then applied, again using a substantial training dataset, for adaptively assigning relative weights to each of the expressions in the target attribute set, thereby forming an awaited list that is highly predictive of the information content category of interest. [Russell-Falla, Adrian Peter; (Portland, OR) ; Hanson, Andrew Bard; (Portland, OR), " Method for scanning, analyzing and handling various kinds of digital information content"]

cf.
Microsoft、MSN Searchの検索能力を大幅に強化

MSNの"Neural Network Technology" - ニューラルネットワークテクノロジ





記事カテゴリ:MS Bing
他の検索・SEO 関連の記事
新刊:ネットショップSEO 2014発売されました(2014年5月)
Google「パーソナライズ検索による劇的な検索順位変動は都市伝説」と説明
Google、カナダでローカルサービス広告を提供開始
グーグルとディズニーがデジタル広告分野で提携
Googleインド、モバイル検索でカバディの試合情報を表示する機能追加
goo, 2018年検索ランキングを発表、人物の1位は「羽生結弦」など
ロシアYandex、検索アップデート「アンドロメダ」を発表
Microsoft Bing、年末商戦にあわせてショッピング検索機能を強化
米Google、検索結果にユーザーがコメントを投稿できる機能を準備
プライバシーを守る検索エンジン DuckDuckGo、検索回数3,000万/1日 突破
ペンス米副大統領、中国市場向け検索アプリ開発の中止を求める
「SEMリサーチ」トップへ戻る




免責事項:SEMリサーチは、本記事中で触れている企業、商品、サービスの全て(情報)について、有用性、適合性、正確性、安全性、最新性、真実性に関する一切の保証をしておりません。各自の判断でご利用下さい。